IV. Capture-Recapture Models with Individual Covariates

INDIVIDUAL COVARIATE MODELS

- p depends on an explicit covariate which you only observe the values of for individuals that are encountered
- \blacksquare logit(p[i]) = alpha0 + alpha1*x[i]
- For this reason, called "Model Mx" (Kery and Schaub BPA)
- Two diametrically opposite approaches to analysis
 - (1) Horvitz-Thompson estimation (Huggins and Alho used this idea based on conditional likelihood)
 - (2) Model-based "full likelihood": Put a distribution on x[i] (Borchers et al. 1998; Royle 2009, Biometrics)

Model Mx

We still have a binomial encounter model:

$$logit(p[i]) = a + b*x[i]$$

• x[i] is NOT OBSERVED for uncaptured individuals

Model for the covariate:

$$x[i] \sim normal(\mu_x, \sigma_x)$$
 (or similar)

INDIVIDUAL COVARIATES

- Huggins, R. M. (1989). On the statistical analysis of capture experiments. *Biometrika*, 76(1), 133-140.
- Alho, J. M. (1990). Logistic regression in capture-recapture models. *Biometrics*, 46(3), 623.
- Borchers, D. L., Zucchini, W., & Fewster, R. M. (1998). Mark-recapture models for line transect surveys. *Biometrics*, 1207-1220.
- Pollock, K. H. (2002). The use of auxiliary variables in capture-recapture modelling: an overview. *Journal of Applied Statistics*, 29(1-4), 85-102.
- Royle, J. A. (2009). Analysis of capture–recapture models with individual covariates using data augmentation. *Biometrics*, 65(1), 267-274.
- Borchers, D.L., S.T. Buckland and W. Zucchini. 2002. Estimating Animal Abundance: Closed Populations (Springer Verlag) (Ch. 11).

Model Mx and multi-session models

- Conceptually and technically Model Mx is exactly like "classstructured" models considered previously except Model Mx usually used in context of a continuous covariate.
- Consider having sex-specificity of model parameters

- Xsex is missing for M-n individuals in our augmented data set.
- Put a prior distribution on it....With a discrete covariate, the prior is "class membership"

Example of model Mh

Microtus data from Williams et al. (2002)

```
source ("microtus.data.R")
head (microtus.data)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0 1 1 0 0 37

[2,] 1 0 1 1 0 46

[3,] 1 1 1 1 0 1 60

[4,] 1 1 1 1 1 49

[5,] 0 0 0 0 1 38

[6,] 1 0 1 0 1 40
```

n = 56 K = 5 sample occasions, x[i] = "body mass" is stored in column 6 of the matrix

Model for x[i]: $x[i] \sim Normal(mu, sigma)$

Analysis of the Microtus data

R work session

R script: closed_models_part4.R

Model Mx: toward SCR

Model Mx has been widely adopted for estimation of N in capture-recapture studies to account for spatial heterogeneity in encounter probability, by defining:

x = "distance to edge" (DTE)

This is estimated for each captured individual and treated as fixed and known.

Boulanger and McLellen (2001) Ivan and White (2013)

Problems: variable precision. Biased near edge! Also doesn't account for trap-level information.

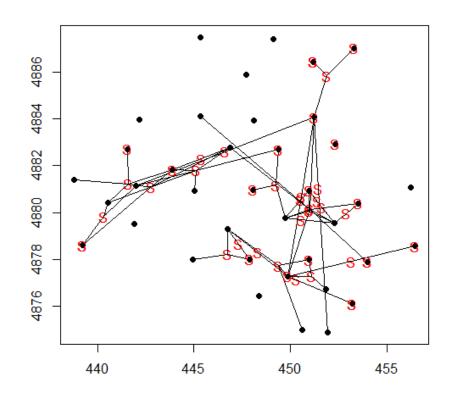
Applying model Mx

We'll use x = distance to centroid (DTC) of trap array, call this "xdist":

```
xdist[i] = dist(sbar[i], x0)

x0 = mean trap location (centroid of trap array)
sbar[i] = average location of individual i.
```

To do the Bayesian analysis by DA we need a prior for xdist[i] to account for uncaptured individuals. Could as well just put the prior on sbar[i] since x0 is known.


Prior for d[i] or prior for s[i]?

- Prior for xdist[i]: What are the possible values for where captureable individuals come from?
- xdist[i] ~ dunif(0, Dmax)

Dmax = furthest possible capture?

Fort Drum black bear data

```
library("scrbook")
data(beardata)
nind<-dim(beardata$bearArray)[1]</pre>
K<-dim(beardata$bearArray)[3]</pre>
ntraps<-dim(beardata$bearArray)[2</pre>
toad<- spiderplot(beardata$bearAr:
## Distance to centroid of traps
xdist<-toad$xcent
## average location of capture
sbar<- toad$avq.s
## Centroid of trap array
x0<- toad$center
```


ESTIMATING DENSITY

- By putting a prior distribution on xdist[i] this explicitly defines an AREA within which the sampleable population lives. That is, N is all individuals within Dmax of the centroid
- You will find that the estimated N changes as you change Dmax.
- The DTC/DTE model, with a prior on the distance covariate, simultaneously estimates N and Density
- Provides resolution to the "unknown area" problem
- (was not noted by Boulanger and McLellan 2001)

MODEL MX HAS PROBLEMS

(1) Subjective choice of Dmax has a big effect – this model implies that density of individuals decreases as you move away from the centroid

Area of concentric rings INCREASES as you move away. So a constant frequency of individuals corresponds to lower density

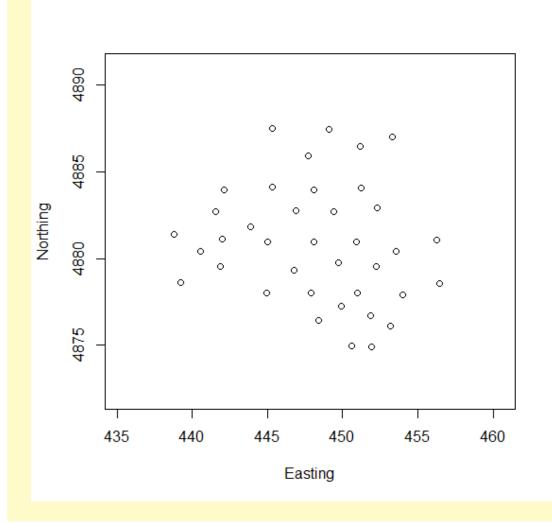
(2) Use of estimated DTC (or DTE) is biased and estimated with variable precision. Model does not account for that.

IMPROVING MODEL MX

- Improvement 1: Instead of messing with a prior on xdist[i] why not just put the prior on sbar[i]? Exactly the same model, just a different prior (via a transformation).
- Improvement 2: Instead of distance to x0, why not distance to each trap x[j]?

```
xdist[i,j] = dist(sbar[i], x[j])
```

■ Improvement 3: "sbar" is really a surrogate for "center of activity" – which is unobserved. Make it a latent variable (like Model Mh but with some indirect information)


Improvement 1 of model Mx

Improvement 1: Instead of messing with a prior on xdist[i] why not just put the prior on sbar[i]? Exactly the same model, just a different prior (via a reparameterization).

- sbar[i] is the average capture location. But it's really a surrogate for "where individual i lives" – home range center?
- What kind of prior makes sense for this? In the absence of information, how about sbar[i] ~ Uniform(space around trap array) ???

S = "space around the trap array"

The prior distribution for "sbar" for the Fort Drum model

- sbar is Uniform(S)
- S defined by: 4 unit buffer around the minimum and maximum x- and ycoordinates
- Try different buffers and verify stabilizing Density = N/area

A WARNING ABOUT COORDINATE SCALING IN BUGS

- The model which regards sbar as a variable effectively predicts sbar for each **uncaptured individual**
- WinBUGS seems to only carry around 4 significant digits (or else R2WinBUGS rounds to 4 digits, we're not sure).
- The coordinates of sbar for Fort Drum is 4xx.x and 48x.x the leading 4 and 48 are costing precision for estimating the coordinates of uncaptured bears due to this 4-digit truncation
- JAGS does not appear to suffer this problem
- If we use BUGS it is imperative that we scale/translate the coordinate system so that we're not carrying around unnecessary digits (or use JAGS)

Improvement 2 of model Mx

Improvement 2: Instead of distance to centroid, why not distance to each trap x[j]?

```
xdist[i,j] = dist(sbar[i], x[j])
```

logit(p[i,j]) = alpha0 + alpha1*xdist[i,j]

Note: p now depends on i and j

Traps are just replicate sample occasions, like distinct methods, or sample frames, or observers, but with trapspecific p.

Improvement 3 of model Mx

- sbar is meant to be an estimate of something, say s, the centroid of activity – "activity center", home range center, etc..
- s is strictly unknown. Regard it as a latent variable.
- In BUGS: input initial values for it, remove from "data"
- No plug-in estimation bias and heterogeneous variance.

SUMMARY OF CAPTURE-RECAPTURE PART 4

- Individual covariate models with distance-to-edge/distanceto-centroid resolve some technical problems with ordinary CR models
 - Heterogeneity in p related to variable exposure to trapping
 - Putting a distribution on the covariate resolve "unknown area"
- Useful as a starting point for developing fully spatial capture-recapture models
 - Model location instead of distance
 - Distance to each trap
 - Treat "s" as a latent variable